Selected exercises.

David Khachatrian
davidkhachatrian.com

August 12, 2019 - ?

1 Introduction.

These exercise solutions refer to questions from the MIT OpenCourseWare course titled "Topics in Mathematics with Applications in Finance". I chose the questions that I believed would be most beneficial to work through/write up. Sections are labeled by the title of the Problem Set. This writeup and any mistakes/typos in it are mine - feel free to contact me if you notice something to correct!
\mathcal{R}

2 Linear Algebra.

Problem A-1

a. True; the row-rank and column-rank of a matrix are always equal.
b. True; we're transforming the basis vectors of B by the transformation A. All the basis vectors of $A B$ will be linear combinations of the columns of B, and so are bounded by $\operatorname{rank}(B)$.
c. True; for any rectangular matrix $C(m \times n), m \neq n$, assume its left-inverse L and right-inverse R exist. By necessity, L must be $n \times m$ (so that $L C=I_{n}$, the identity matrix of n dimensions) and R must be $m \times n$ (so that $C R=I_{m}$, the identity matrix of m dimensions). So just considering dimensions, $L \neq R$.
d. False; rectangular matrices can be full-rank but are never invertible.
e. False; for example, $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ is not invertible.
f. False; an eigenvalue of a matrix can be 0 , in which case the matrix is not invertible.
g. False. By definition, A is diagonalizable if there exists a P such that $P^{-1} A P=D$ is diagonal. Consider that by the earlier equation, we also have $A=P D P^{-1}$. If A is full-rank, we can recognize this as an eigendecomposition of A, where P are the eigenvectors and D the corresponding eigenvalues.
However, there is no restriction on the values of the diagonal entries of D. Say some of those entries are 0 . Then this suggests that 0 is an eigenvalue of A, and therefore A is not invertible.

Problem B-1

Note that with the singular-value decomposition $A=U \Sigma V^{T}$ (U and V orthogonal matrices, Σ rectangulardiagonal), we have that

$$
A A^{T}=U\left(\Sigma \Sigma^{T}\right) U^{T}, \quad A^{T} A=V\left(\Sigma^{T} \Sigma\right) V^{T}
$$

where we recognize the above as the eigendecompositions of the symmetric matrices $A A^{T}$ and $A^{T} A$. Let us say A is $n \times m$ (so U is $n \times m, V^{T}$ is $m \times m$, and Σ is $n \times m$).
a. True. Recall that $\operatorname{rank}(A B) \leq \min (\operatorname{rank}(A) \operatorname{rank}(B))$. This is also valid for more than two matrices at a time -at no point can a linear transformation spontaneously increase the span of a set of vectors. So

$$
\begin{aligned}
\operatorname{rank}\left(U \Sigma V^{T}\right) & =\min \left(\operatorname{rank}(U), \operatorname{rank}(\Sigma), \operatorname{rank}\left(V^{T}\right)\right) \\
& =\min (n, \operatorname{rank}(\Sigma), m) \quad(\mathrm{U} \text { and } \mathrm{V} \text { are orthogonal and so have full rank.) } \\
& =\operatorname{rank}(\Sigma) \quad(\text { A matrix's rank must be smaller than its number of rows and columns.) } \\
& =\operatorname{rank}(A) \quad\left(U \Sigma V^{T}=A\right)
\end{aligned}
$$

b. True. We mentioned before that U and V^{T} correspond to the eigenvector matrices of $A A^{T}$ and $A^{T} A$, so they are immediately determined once A is chosen.
Let's prove by contradiction. Suppose there existed a $\Sigma^{\prime} \neq \Sigma$ such that $U \Sigma^{\prime} V^{T}=A$. Then $U\left(\Sigma^{\prime}-\Sigma\right) V^{T}=\mathbf{0}$. But $\operatorname{rank}\left(\Sigma^{\prime}-\Sigma\right)>0$, so $\operatorname{rank}\left(U\left(\Sigma^{\prime}-\Sigma\right) V^{T}>0\right)$ while $\operatorname{rank}(\mathbf{0})=0$. But that means $U\left(\Sigma^{\prime}-\Sigma\right) V^{T} \neq \mathbf{0}$. A contradiction! So our supposition is incorrect; in fact, there is no other $\Sigma^{\prime} \neq \Sigma$ that corresponds to A (aside from permuting its rows/columns, which would involve permuting the rows and columns of U and V^{T}).
c. False. In particular, if A is not symmetric, then $U \neq V$. (Is explanation valid?)

Quick lemma: for a matrix $M, M M^{T}$ and $M^{T} M$ are symmetric. Proof: Say that m_{j} refers to the i^{\prime} th column vector of M. Then we can describe $M M^{T}=\sum_{i} m_{i} m_{i}^{T}$ as a sum of outer products. An outer product
$P=v v^{T}$ is always symmetric $P_{i j}=v_{i} v_{j}=v_{j} v_{i}=P_{i j}$, and the sum of symmetric matrices are symmetric (you're performing the same operations to each pair of "matched" entries). So $M M^{T}$ is symmetric (and therefore so is $\left.\left(M M^{T}\right)^{T}=M^{T} M\right)$.

Now for the actual proof of the claim. Let's prove by contradiction. Suppose that $A(n \times n)$ is not symmetric and also $U=V$. We can always write out $\Sigma=K K^{T}$ (for a square Σ, the values of K would be the square-roots of the entries of Σ.) Then $A=U K K^{T} U^{T}=(U K)(U K)^{T}$. In general, $M M^{T}$ is symmetric (see lemma above). So $(U K)(U K)^{T}=A$ is symmetric. But we said A is not symmetric. Contradiction! So a part of our initial assumption is incorrect. In this case, we can resolve the contradiction by making $U \neq V$.
d. True. Now that we force A to be symmetric, we have that $A A^{T}=A^{T} A$, so they have the same eigenvectors, so in fact we must have that $U=V$.

Problem B-3

We want to find for any symmetric positive (semi-)definite matrix A an orthonormal matrix U such that $U^{T} A U=D$ for a diagonal matrix with non-negative entries D. (A being positive semi-definite implies $v^{T} A v \geq 0 \forall v \neq \mathbf{0}$.)

Since A is symmetric, we can use singular-value decomposition to write $A=U \Sigma V^{T}$ with $U=V$ being orthogonal. Multiplying both sides on the left and on the right by U^{-1} (which, because U is orthogonal, has the relation $U^{-1}=U^{T}$) gives us $\Sigma=U^{T} A U$.

Note that since A is symmetric, we can read the above as the eigendecomposition of $A: A=U \Lambda U^{T}$ and $U^{T} A U=\Lambda$. So by choosing the unit-norm eigenvectors of A to form U, we can get the diagonal matrix of eigenvalues Λ. The eigenvalues of A must be non-negative; if any of them weren't, then we could take its corresponding eigenvector as v_{i} and have $v_{i}^{T} A v_{i}<0$, which violates the assumption that A is positive semi-definite. So $\Lambda=\Sigma$ is our diagonal matrix with non-negative entries D.

Problem B-4

With $v_{1}, \cdots, v_{n} \in \mathbb{R}^{m}$ forming the columns of A (an $m \times n$ matrix), and $w \in \mathbb{R}^{m}$, we want $x \in \mathbb{R}^{n}$ that minimizes $\|L\|$ with $L=A x-w$.
a. If A were diagonal, we can minimize L pretty simply. In particular, let $A_{t}(r \times c)$ be the truncated matrix that removed the rows or columns of A that contain just 0 (more specifically, $r=c=\min (n, m)$). Truncate $x_{t} \in \mathbb{R}^{c}$ and $w_{t} \in \mathbb{R}^{r}$ accordingly. Now A_{t} is invertible, so we can set $x_{t}^{*}=A_{t}^{-1} w_{t}$ and have $L_{t}=A_{t} x_{t}^{*}-w_{t}:=0$. The "leftover" dimensions of w cannot be captured by $A x$ and so characterize the minimum value of $\|L\|$.

More simply: we have differing numbers of equations and coordinates, but each equation we do have says "coordinate i of your answer should be $z_{i}=w_{i} / A_{i, i}$ ". So you set your $x_{i}=z_{i}$ for all the equations you actually have, and that would minimize the error as much as you can using the information you have.
b. Now suppose we don't have A diagonal, but we know its SVD: $A=U \Sigma V^{T}$. No problem! We can write

$$
A x-w=U \Sigma V^{T} x-w=U \Sigma V^{T} x-U U^{T} w=U\left(\Sigma V^{T} x-U^{T} w\right)
$$

Then we can say

$$
\begin{aligned}
L & =U\left(\Sigma V^{T} x-U^{T} w\right) \\
U^{T} L & =\Sigma\left(V^{T} x\right)-U^{T} w
\end{aligned}
$$

where we're now minimizing $\left\|U^{T} L\right\|$, but since U is orthogonal, $\left\|U^{T} L\right\|=\|L\|$. Using part (a), our diagonal matrix $A \rightarrow \Sigma, x \rightarrow V^{T} x, w \rightarrow U^{T} w$. So we have $\left(x_{t}^{*}=A_{t}^{-1} w_{t}\right) \rightarrow\left(\left(V^{T} x\right)_{t}^{*}=\Sigma_{t}^{-1} U_{t}^{T} w_{t}\right)$. Finally,
we can "unrotate" our optimal solution and get $x_{t}^{*}=V_{t} \Sigma_{t}^{-1} U_{t}^{T} w_{t}$.
Note that $\left(U_{t} \Sigma_{t} V_{t}\right)^{-1}=V_{t} \Sigma_{t}^{-1} U_{t}^{T}$, so we have that $x_{t}^{*}=A_{t}^{-1} w_{t}$ —we're still essentially "inverting a truncated version of $A^{\prime \prime}$ to get our optimal solution.

Note: Rather than performing truncation, one could solve Part (a) and (b) by using the Moore-Penrose pseudoinverse of A. But in most contexts, it's computationally more feasible/convenient to truncate out uninformative rows/columns to greatly reduce space-complexity.
c. Say we instead have $\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{2}$ and we want to find a, b such that $\sum_{i=1}^{n}\left(a x_{i}+b-y_{i}\right)^{2}$ is minimized. This is just a case of the above:

- $m:=2, n:=n$
- $x=[b, a]$.
- $A=\left[\begin{array}{cc}1 & x_{1} \\ 1 & x_{2} \\ \vdots & \vdots \\ 1 & x_{n}\end{array}\right]$.
- $w=\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{T} \in \mathbb{R}^{n}$.

Technically one is minimizing $\|L\|^{2}$, but if you minimize $\|L\|$ you've minimized $\|L\|^{2}$.
d. A simple extension of (c) can find the quadratic equation $y=a x^{2}+b x+c$ of best fit.

- Now $m=3$.
- Change $x:=[c, b, a]$.
- Change $A=\left[\begin{array}{ccc}1 & x_{1} & x_{1}^{2} \\ 1 & x_{2} & x_{2}^{2} \\ \vdots & \vdots & \vdots \\ 1 & x_{n} & x_{n}^{2}\end{array}\right]$.
$-8 / 12 / 19$

3 Probability Theory and Stochastic Processes

3.1 Problem A-1

(f). We're assuming the time it takes each of $k=3$ clerks to service a customer follows an exponential distribution. They're currently busy with customers and you're the only person in line. Perhaps shockingly, the probability you're last to leave is $1 / k$ - no worse than the other people who had been with clerks for much longer by the time you get your turn!

This is due to the memoryless property of exponential distributions, namely that if $X \sim \operatorname{Exp}(\lambda)$, then $\operatorname{Pr}[X>(s+t) \mid X>t]=\operatorname{Pr}[X>s]$ — the probability you'll have to wait a duration of length s is the same no matter how long you've waited before.

So, once you arrive at the clerk's booth, there is symmetry between you and the other customers/clerks. So by symmetry, the probability that you're last to leave is the probability that Person 2 is last to leave, etc, so $\operatorname{Pr}[$ you leave last $]=1 / 3$.

