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1 LDA vs QDA vs FDA

We distinguish between

1. Fisher’s Discriminant Analysis (FDA), which is a method of feature extraction/dimensionality reduction

2. (Linear/Quadratic) Discriminant Analysis (L/QDA), which is a classifier.

1.1 FDA

In FDA, you have n data points in Rd labeled into k categories. You’d like to reduce the number of dimensions
to m < d while

1. maximizing distance between clusters

2. minimizing variance within each cluster

In particular, we want to choose w ∈ Rm×d that maximizes

wT sBw

wT sWw
(1)

where sB represents the variance between clusters and sW represents the variances within each cluster.
You can solve this using e.g. Lagrange multipliers (we’re only interested in the direction of w, so an equivalent
optimization problem is to maximize wT sBw while restricting wT sWw := 1) and you’ll find that the optimal
w satisfies s−1

W sBw = λw. So w are the eigenvectors of s−1
W sB , and in fact you are limited to having m := k−1.

1.2 LDA/QDA

In LDA and QDA, we still have n data points labeled into k categories, but now we want to make a classifier
using this dataset.

We make one key modeling assumption: We assume the data for each label comes from a multivariate
Normal (Gaussian) distribution. From there you can give each distribution its µ and Σ using their usual
maximum-likelihood-estimation (MLE) estimators.

Our decision boundaries will be where the probability of generating the datapoint is equal between two
clusters. We classify a point x into the category whose associated Gaussian distribution has the highest
probability density at that point.

Going through the math of

P (x | x came from category j) = P (x | x came from category k)

you’ll find while simplifying that there will be quadratic forms xT Σjx+ · · ·−xT Σkx = 0. This means the
final decision boundary between two classes will be quadratic (hence quadratic discriminant analysis). You
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can piece together these pairwise decision boundaries to form your decision boundary for all the different
classes.

If we make another simplifying assumption, namely that the covariance matrices for each category’s
Normal distribution are the same, then the quadratic forms cancel each other out and you’ll have linear
decision boundaries. Including this second assumption makes the classifier a linear discriminant analysis
classifier.

Good links: https://www.youtube.com/playlist?list=PLehuLRPyt1Hy-4ObWBK4Ab0xk97s6imfC (Lec-
tures 2,3,4)
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2 PCoA/Classical MDS

In Principal Component Analysis (PCA), we have a design matrix X (n× p) and we want to find principal
components which best describe the covariance of the data: Σd = XT

c Xc ∈ Rd×d. What this amounts to
is obtaining the eigenvectors vi for Σ, whose percentage of variance is determined by the proportion λi/

∑
i λi.

Consider instead K(L2) := XcX
T
c ∈ Rn×n. This contains the same information as Σ, just packaged in

a different way. From considering the SVD of Xc, we’d see that K(L2) = XcX
T
c and Σ = XT

c Xc have the
same eigenvalues. So if we were to perform PCA on K(L2) instead of Σ, we’d get principal directions that,
axis-per-axis, describe the same proportion of the covariance! The only difference is that in the description
for Σ, the principal components are described as a linear combination of the d dimensions, whereas when
using K(L2) we’d end up describing them as a linear combination of the n samples. (Might be an odd
thought to have ”eigensamples”, but it’s worth pondering.)

I’ve laboriously kept writing the L2 in K(L2) to denote that XcX
T
c gives the squared L2 distances be-

tween the samples. That is, we choose d(x, y) = ‖x− y‖22.

In Principal Coordinate Analysis (PCoA), also known as classical/Torgerson’s Multidimensional Scaling
(Classical/Torgerson’s MDS), we choose whatever distance function d we’d like in order to construct
K(d). We then perform the same machinery (e.g., SVD) to find its eigenvalues. An example of this where
this could be useful is in gene expression analysis, where one may be more interested in average absolute
log-fold differences between genes, i.e., for samples x ∈ Rp,

d(x, y) =

∑p
k=1 | log(xk/yk)|

p

You could load K with entries according to the above distance metric, and your visualization may more
closely reflect ”proximity” according to one studying differences in gene expression.

Good links:

• https://stats.stackexchange.com/a/132731/216799

• https://www.youtube.com/watch?v=GEn-_dAyYME
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